Fungsi Kuadrat, Rasional, Irasional

 Silviany Puteri Aulia

Absen 32


Fungsi kuadrat merupakan suatu fungsi yang pangkat terbesar variabelnya adalah 2. Hampir mirip seperti persamaan kuadrat, namun berbentuk suatu fungsi. Fungsi kuadrat memiliki bentuk umum, f(x) = ax2 + bx + c = 0 dimana a, b, dan c adalah bilangan real dan a ≠ 0.

Contoh Fungsi Kuadrat

Contoh 1 :

  • Diketahui : f(x) = x2 – 6x – 7
  • Ditanya :
    • nilai pembuat nol fungsi f
    • nilai f untuk x = 0 , x = –2

 

  • Jawab:

Nilai pembuat nol fungsi f diperoleh jika f(x) = 0
x2 – 6 x – 7 = 0

(x – 7) (x + 1) = 0

x = 7 atau x = –1

Jadi pembuat nol fungsi f adalah 7 dan –1

Untuk x = 0 maka f(0) = –7
x = –2 maka f(–2) = (–2)2 – 6 (–2) – 7 = 9

 

 

Contoh 2 :

  • Tentukan nilai p agar ruas kanan f(x) = 3 x2 + (p – 1) + 3 merupakan bentuk kuadrat sempurna.

 

  • Jawab :

Supaya merupakan suatu kuadrat sempurna, syaratnya D = 0.

D = (p – 1)2 – 4 . 3 . 3 = 0

p2 – 2p – 35 = 0

(p – 7) (p + 5) = 0

p = 7 atau p = –5

Jadi, agar ruas kanan f(x) merupakan suatu kuadrat sempurna, maka p = 7 atau p = –5.

Fungsi Rasional
Fungsi rasional merupakan fungsi yang mempunyai bentuk umum
Fungsi Rasional
Dengan p dan d adalah polinomial dan d(x) ≠ 0. Domain dari V(x) merupakan seluruh bilangan real, kecuali pembuat nol dari d.

Adapun fungsi rasional yang paling sederhana, yakni fungsi y = 1/x dan fungsi y = 1/x².

Di mana keduanya mempunyai pembilang konstanta sertaa penyebut polinomial dengan satu suku. Dan kedua fungsi tersebut mempunyai domain semua bilangan real kecuali x ≠ 0.

Fungsi y = 1/x

Fungsi ini disebut juga sebagai fungsi kebalikan sebab setiap kita mengambil sembarang x (kecuali nol) maka akan menghasilkan kebalikannya sebagai nilai dari fungsi tersebut.

Yang artinya x yang besar akan menghasilkan nilai fungsi yang kecil, begitu juga sebaliknya. Tabel dan grafik dari fungsi tersebut bisa dilihat pada gambar di bawah ini.

soal grafik fungsi rasional dan penyelesaiannya

Tabel dan grafik di atas menunjukan beberapa hal yang menarik.

Yang pertama, grafik tersebut lolos pada uji garis vertikal. Yang berarti setiap garis vertikal pada bidang koordinat Cartesius akan memotong grafik pada maksimal satu titik.

Sehingga, y = 1/x adalah sebuah fungsi.

Yang kedua, sebab pembagian tidak terdefinisi jadi saat pembaginya nol, maka nol tidak akan mempunyai pasangan, sehingga menghasilkan jeda pada x = 0.

Hal tersebut sesuai dengan domain dari fungsi tersebut, yakni seluruh x anggota bilangan real kecuali 0.

Yang ketiga, fungsi tersebut adalah fungsi ganjil, dengan salah satu cabangnya terletak di kuadran I.

Sementara yang lainnya berada pada kuadran III.

Kemudian yang terakhir, pada kuadran I, saat x menuju tak hingga, nilai y menuju dan mendekati nilai nol.

Secara simbolis bisa kit tuliskan sebagai x → ∞, y → 0. Secara grafis, kurva dari grafik fungsi tersebut akan mendekati sumbu-pada saat x mendekati tak hingga.

Tak hanya itu saja, kita juga bisa mengamati bahwa pada saat x mendekati nol dari kanan maka nilai y akan mendekati bilangan real positif yang sangat besar (positif tak hingga): x → 0+y → ∞.

Untuk catatan, tanda + atau – yang berada di atas akan mengindikasikan arah dari pendekatan. Yakni dari sisi positif (+) atau dari sisi negatif (–).

Contoh 1

Mendeskripsikan Sifat dari Ujung Grafik Fungsi Rasional

Untuk y = 1/x dalam kuadran III,

  1. Mendeskripsikan sifat dari ujung grafik fungsi tersebut.
  2. Mendeskripsikan apa yang akan terjadi pada saat x mendekati nol.

Pembahasan Serupa dengan sifat grafiknya pada kuadran I, maka akan kita peroleh

  1. Pada saat x mendekati negatif tak hingga, nilai y akan mendekati nol. Jika disimbolkan akan menjadi: x → –∞, y → 0.
  2. Pada saat x mendekati nol dari kiri, nilai y akan mendekati negatif tak hingga. Pernyataan tersebut juga bisa kita tuliskan dengan simbol x → 0y → –∞.

Fungsi y = 1/x²

Dari pembahasan di atas, kita bisa mengetahui bahwa grafik dari fungsi ini akan mengalami jeda pada saat x = 0.

Namun demikian, sebab kuadrat dari sembarang bilangan negatif merupakan bilangan positif, cabang-cabang dari grafik fungsi ini akan terletak kdi atas sumbu-x.

Perhatikan bahwa fungsi y = 1/x² adalah fungsi genap.

rasional dan grafiknya pdf

Sama halnya dengan y = 1/x, nilai x yang mendekati positif tak hingga akan menghasilkan y yang mendekati nol. Jika kita tulis simbolnya maka akan menjadi: x → ∞, y → 0.

Hal ini adalah salah satu indikasi dari sifat asimtot dalam arah horizontal. Serta kita akan menyatakan y = 0 adalah asimtot horizontal dari fungsi y = 1/x dan y = 1/x². Secara umum.

Fungsi irrasional adalah fungsi yang memetakan himpunan bilangan real tak negatif kepada himpunan itu sendiri. Sehingga fungsi irrasional memiliki syarat bahwa fungsi akan terdefinisi apabila nilai di dalam akar tersebut tidak negatif.

Pada fungsi tersebut terlihat bahwa fungsi tersebut irrasional yang di dalam akar memiliki bentuk pecahan biasa, sehingga dalam pecahan biasa memiliki syarat penyebut tidak boleh bernilai begin mathsize 14px style 0 end style.

Dengan demikian, agar fungsi begin mathsize 14px style f left parenthesis x right parenthesis equals square root of fraction numerator x minus 2 over denominator x plus 2 end fraction end root end style terdefinisi, maka nilai begin mathsize 14px style x end style haruslah  begin mathsize 14px style x less than negative 2 space atau space x greater or equal than 2 end style.

Komentar